intersil

ISL71840SEHEV1Z Evaluation Board User Guide

Description

The <u>ISL71840SEH</u> is a radiation hardened, 16-channel high ESD protected multiplexer that is fabricated using Intersil's proprietary P6SOI (Silicon On Insulator) process technology to mitigate single-event effects and total ionizing dose. It operates with a dual supply voltage ranging from $\pm 10.8V$ to $\pm 16.5V$. "This evaluation board is designed to provide easy access to the capabilities of the part."

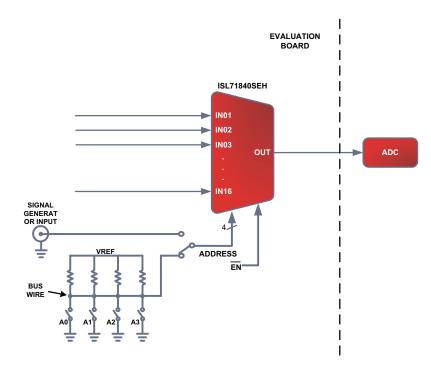
The evaluation board has a DIP switch, which provides a convenient way to address all 16 channels without the need for extra supplies. There's also a BNC input available that will allow you to drive the address pins with a signal generator.

Specifications

This board has been configured and optimized for the following operating conditions:

- V₊ = +10.8V to +16.5V
- V_ = -10.8V to -16.5V
- V_{REF} = 4.5V to 5.5V

Key Features


- · Jumper selectable input source for each input
- DIP switch to conveniently select 1 of 16 channels
- BNC input for dynamic addressing
- Multiple loading options with jumpers on VOUT
- Convenient power connection
- On-board enable switch

References

ISL71840SEH Datasheet

Ordering Information

PART NUMBER	DESCRIPTION	
ISL71840SEHEV1Z	Evaluation board for the ISL71840SEH	

ISL71840SEHEV1Z Evaluation Board

FIGURE 2. TOP SIDE

FIGURE 3. BOTTOM SIDE

Power Supplies

This board has power supply inputs for V+, V- and VREF. There's no requirements for sequencing on these supplies, but it is recommended that the supplies come up relatively at the same time. In-line resistors are provided to V+ and V- with decoupling capacitors close to the part for V+, V- and VREF. The in-line resistors are 100 Ω but can be changed by the user for additional power supply filtering or to limit the rise time of the supply voltages.

The voltage ranges for V+ is +10.8V to +16.5V and the range for V- is -10.8V to -16.5V. VREF ranges from 4.5V to 5.5V. The ISL71840SEH is a rail-to-rail mux and should be able to accommodate any input signal with a voltage level between or equal to the supplies voltages. VREF is used to set the decoder logic levels.

PCB Layout Guidelines

The ISL71840SEHEV1Z PCB layout has been optimized for ease of testing. When incorporating the ISL71840SEH into a system there are a few guidelines that can ensure optimal electrical and noise performance.

- Analog circuits can conduct noise through paths that connect it to the "outside world". These paths include the V+, V-, VREF, input to any switch and the output. It is important to make sure these paths are kept away from known noise sources.
- It is recommended to decouple the power supply pins (V+, Vand VREF) for power supply filtering. If the traces to the supply lines are long, it is recommended to use a larger 1µF capacitor at the point of entry for the supply and a smaller capacitor, like a 0.1µF, close to the part to reduce high frequency perturbations.

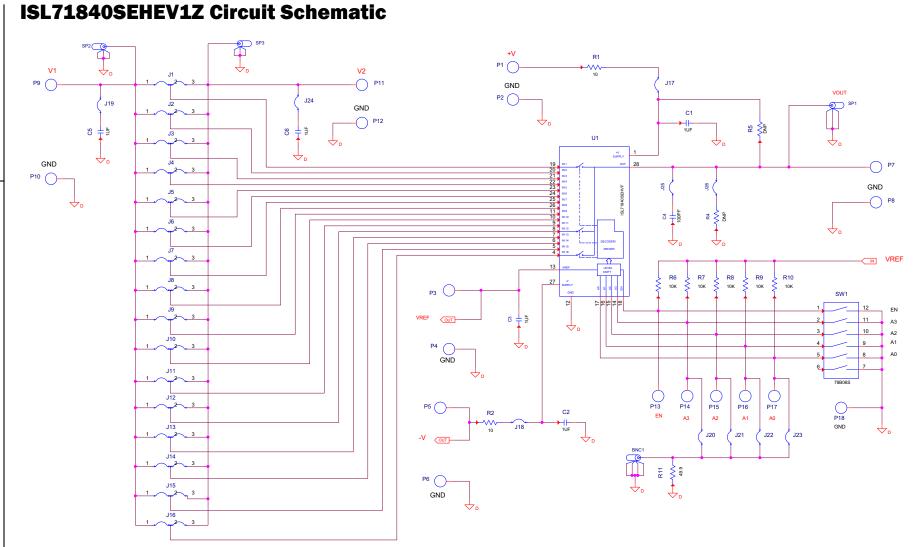


FIGURE 4. ISL71840SEHEV1Z SCHEMATIC

Bill of Materials

ITEM	QTY	REFERENCE DESIGNATOR	VALUE	TOL (%)	RATING	TYPE	PCB FOOTPRINT	MANUFACTURER	MANUFACTURER PART NUMBER
1	1	C4	100pF	5	50V	X7R	0805	PANASONIC	ECU-V1H101JCG
2	5	C1, C2, C3, C5, C6	1μF	10	25V	X7R	0805	AVX	08053C105KAT2A
3	2	R4, R5	DNP	1	DNP		0805	GENERIC	
4	2	R1, R2	10Ω	1	1/10W		0805	VENKEL	CR0805-8W-10R0FT
5	5	R6, R7, R8, R9, R10	10ΚΩ	1	1/10W		0805	VENKEL	CR0805-8W-1002FT(Pb-free)
6	1	R11	49.9Ω	1	1/10W		0805	ROHM	MCR10EZHF49R9
7	3	SP1-SP3					CONN	TEKTRONIX	131-4353-00
8	18	P1-P18					THOLE	KEYSTONE	1514-2
9	1	BNC1					CONN	AMPHENOL	31-5329-51RFX
10	1	SW1					DIP	GRAYHILL	78B06S
11	1	U1					28CDFP	INTERSIL	ISL71840SEH/PROTO
12	16	J1-J16					THOLE	BERG/FCI	68000-236HLF
13	10	J17-J26						BERG/FCI	69190-202HLF
14	4	Bottom four corners						ЗМ	SJ-5003SPBL

Board Layout - 4 Layers

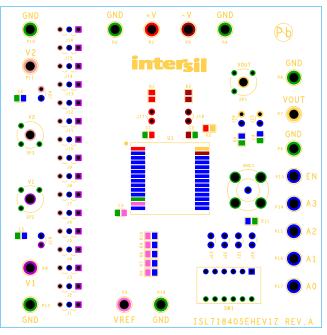


FIGURE 5. SILKSCREEN TOP

Board Layout - 4 Layers (Continued)

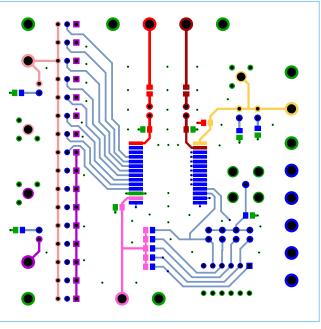


FIGURE 6. TOP LAYER

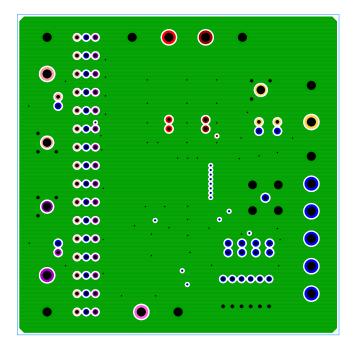


FIGURE 7. PCB - INNER LAYER 1 (TOP VIEW)

Board Layout - 4 Layers (Continued)

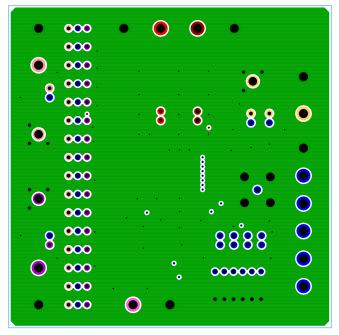


FIGURE 8. PCB - INNER LAYER 2 (TOP VIEW)

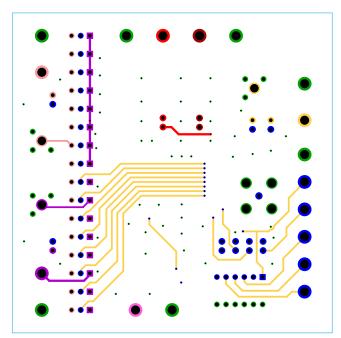


FIGURE 9. PCB - BOTTOM LAYER (TOP VIEW)

Board Layout - 4 Layers (Continued)

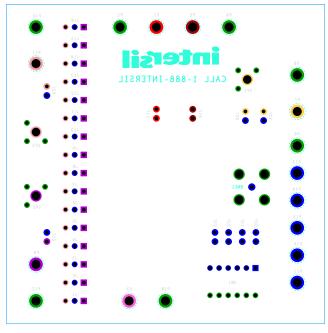
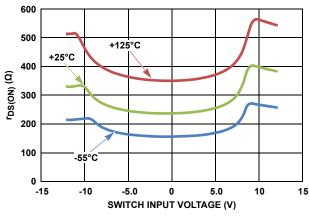
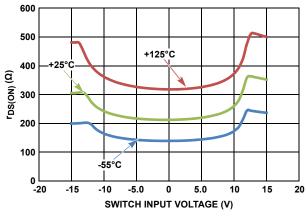
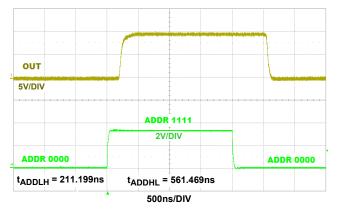
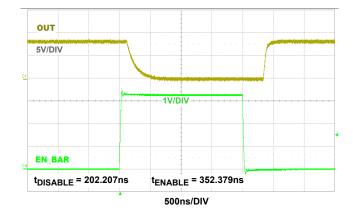
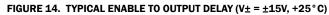




FIGURE 10. SILKSCREEN BOTTOM







Typical Performance Curves Unless otherwise noted: V₊ = +15V, V₋ = -15V, V_{REF} = 5.0V, T_A = +25°C (Continued)

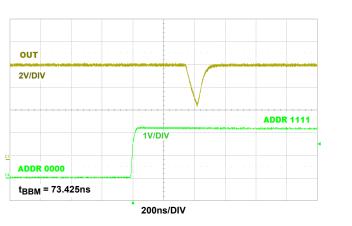


FIGURE 15. TYPICAL BREAK BEFORE MAKE DELAY (V± = 15V, +25°C)

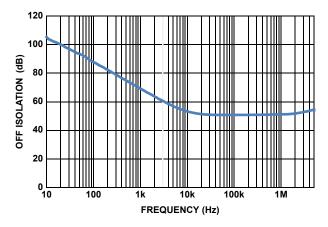


FIGURE 16. OFF ISOLATION (V $\pm = \pm 15V, \pm 25^{\circ}C$)

Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that the document is current before proceeding.

For information regarding Intersil Corporation and its products, see www.intersil.com